Notch/neurogenin 3 signalling is involved in the neuritogenic actions of oestradiol in developing hippocampal neurones.
نویسندگان
چکیده
The ovarian hormone oestradiol promotes neuritic outgrowth in different neuronal types, by mechanisms that remain elusive. Recent studies have shown that the Notch-regulated transcription factor neurogenin 3 controls neuritogenesis. In the present study, we assessed whether oestradiol regulates neurogenin 3 in primary hippocampal neurones. As expected, neuritogenesis was increased in the cultures treated with oestradiol. However, the neuritogenic action of oestradiol was not prevented by ICI 182,780, an antagonist of classical oestrogen receptors (ERs). Oestradiol decreased the expression of Hairy and Enhancer of Split-1, a Notch-regulated gene that negatively controls the expression on neurogenin 3. Furthermore, oestradiol increased the expression of neurogenin 3 and regulated its distribution between the neuronal cell nucleus and the cytoplasm. The effect of oestradiol on neurogenin 3 expression was not blocked by antagonists of classical nuclear ER-mediated transcription and was not imitated by selective agonists of nuclear ERs. By contrast, G1, a ligand of G protein receptor 30/G protein-coupled ER, fully reproduced the effect of oestradiol on neuritogenesis, neurogenin 3 expression and neurogenin 3 subcellular localisation. Moreover, knockdown of neurogenin 3 in neurones by transfection with small interference RNA for neurogenin 3 completely abrogated the neuritogenic actions of oestradiol and G1. These results suggest that oestradiol regulates neurogenin 3 in primary hippocampal neurones by a nonclassical steroid signalling mechanism, which involves the down-regulation of Notch activity and the activation of G protein receptor 30/G protein-coupled ER or of other unknown G1 targets. In addition, our findings indicate that neurogenin 3 participates in the neuritogenic mechanisms of oestradiol in hippocampal neurones.
منابع مشابه
Oestradiol synthesized by female neurons generates sex differences in neuritogenesis
Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippoc...
متن کاملRapid nongenomic effects of oestradiol on gonadotrophin-releasing hormone neurones.
That oestradiol can have both negative- and positive-feedback actions upon the release of gonadotrophin-releasing hormone (GnRH) has been understood for decades. The vast majority of studies have investigated the effects of in vivo oestrogen administration. In the past decade, evidence has accumulated in many neuronal and non-neuronal systems indicating that, in addition to traditional genomic ...
متن کاملEstradiol Meets Notch Signaling in Developing Neurons
The transmembrane receptor Notch, a master developmental regulator, controls gliogenesis, neurogenesis, and neurite development in the nervous system. Estradiol, acting as a hormonal signal or as a neurosteroid, also regulates these developmental processes. Here we review recent evidence indicating that estradiol and Notch signaling interact in developing hippocampal neurons by a mechanism invo...
متن کاملher3, a zebrafish member of the hairy-E(spl) family, is repressed by Notch signalling.
her3 encodes a zebrafish bHLH protein of the Hairy-E(Spl) family. During embryogenesis, the gene is transcribed exclusively in the developing central nervous system, according to a fairly simple pattern that includes territories in the mesencephalon/rhombencephalon and the spinal cord. In all territories, the her3 transcription domain encompasses regions in which neurogenin 1 (neurog1) is not t...
متن کاملher4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling.
her4 encodes a zebrafish bHLH protein of the hairy-E(spl) family. The gene is transcribed in a complex pattern in the developing nervous system and in the hypoblast. During early neurogenesis, her4 expression domains include the regions of the neural plate from which primary neurons arise, suggesting that the gene is involved in directing their development. Indeed, misexpression of specific her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroendocrinology
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2011